Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms.

نویسندگان

  • Wen-Chi Chiang
  • Martin Nilsson
  • Peter Østrup Jensen
  • Niels Høiby
  • Thomas E Nielsen
  • Michael Givskov
  • Tim Tolker-Nielsen
چکیده

Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes, which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms

Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted c...

متن کامل

Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa

Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divale...

متن کامل

Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellu...

متن کامل

Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms.

We previously demonstrated that extracellular bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Biofilms are microbial communities enclosed in a polymeric matrix that play a critical role in the pathogenesis of many infectious diseases. Because extracellular DNA is a key component of biofilms of different bacterial species, the aim of this study was to determine...

متن کامل

In vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa

Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2013